Wl

How (and Why!) To Use
PrimeTime’s Distributed Multi-
Scenario Analysis

Chris Papademetrious
PrimeTime CAE

SYNOPSYS

Predictable Success

\
SU[] About This Presentation

SAN JOSE

2007

* This presentation explores:

= ...why people need multiple STA analyses
= ...how they are sometimes combined together

= ...the advantages and disadvantages of merging analyses
together versus analyzing them separately

= ...how PrimeTime’s DMSA can help you get the most
accurate analysis, in less time, with less user effort, and
fewer resources

* This presentation does not:

= ...cover slide after slide of boring DMSA command syntax
without teaching you why the feature is worth learning in the
first place!

» Your local Synopsys AC would be happy to give that ©
© 2006 Synopsys, Inc. (2) Sy"upsysw

Predictable Success

%[} Agenda

SAN JOSE

2007

* Where Multiple Analyses Come From

* Combining Modes

= Introduction
= Accuracy Impact
= Memory/Runtime Requirements

= Script Complexity
* Distributed Multi-Scenario Analysis (DMSA)

= Introduction and Setup

= Features

= Example: Hold-Fixing
°* Summary

SYNOPSYS

© 2006 Synopsys, Inc. (3)
Predictable Success

)
SIJ(] Where Multiple Analyses Come From

SAN JOSE

2007

* The two primary causes of multiple analyses:

= multiple operating modes
= multiple analysis corners

* What are they? o)

2

SYNOPSYS

Predictable Success

)
SIJ(] Where Multiple Analyses Come From

SAN JOSE

2007

* A design typically has multiple operating modes

= Multiple mission modes

« Different clock frequencies

« Different clock muxing configurations

» Different configuration constants to control logic behavior
= Multiple test modes

« ATPG scan shift

 ATPG scan capture

* BIST modes

« JTAG

© 2006 Synopsys, Inc. (5) Sy"upsysw

Predictable Success

)
SIJ(] Where Multiple Analyses Come From

SAN JOSE

2007
* A design must reliably operate across:

= its specified range of voltage/temperature (VT) conditions:
the chip’s environment

= the range of possible process/interconnect (P) conditions:
the chip’s manufacturing characteristics

* A specific set of conditions (environmental VT and
manufacturing P) is called a corner

=&

© 2006 Synopsys, Inc. (6)

r .//////)

SYNOPSYS

Predictable Success

)
SU[J Where Multiple Analyses Come From

* STA must pass in every operating mode under every PVT corner
condition

= These terms multiply:

device VT corners

Y
operating modes

* That's a lot of analyses!

© 2006 Synopsys, Inc. (7) Sy"upsysm

Predictable Success

\
SU[] Simplifying the Problem

SAN JOSE

2007

* Designers sometimes try to reduce the number of runs
using various techniques:
= Skipping certain mode/corner combinations entirely
= Limiting corner combinations and adding more margin
= Combining similar operating modes together

* The first two are simply omissions of corner analyses
based on engineering judgment

* The third - whether to combine operating modes
together or keep them separate - is our focus

= Let’s talk more about this...

© 2006 Synopsys, Inc. (8) Sy"upsysw

Predictable Success

%[} Agenda

SAN JOSE

2007

* Where Multiple Analyses Come From
* Combining Modes

= Introduction

= Accuracy Impact

= Memory/Runtime Requirements
= Script Complexity

* Distributed Multi-Scenario Analysis (DMSA)

= Introduction and Setup

= Features

= Example: Hold-Fixing
°* Summary

© 2006 Synopsys, Inc. (9) Sy"upsysn

Predictable Success

I
SU(] Combining Modes: An Example

SAN JOSE

2007

* Consider the following example circuit:

CLK250 > -
0 I I
CLK333 > 1
FF2
SEL > I’b' I”' P

* CLK250 is selected in mode 0, and CLK333 is selected
In mode 1

SYNOPSYS

Predictable Success

SAN JOSE

2007

I
SU{] Combining Modes: An Example

* Analyzed separately, case analysis is used to select
the appropriate clock for each mode

mode O:

mode 1:

create clock —period 4.00 CLK250
create clock —period 3.00 CLK333
set case_analysis 0 SEL

create clock —period 4.00 CLK250
create clock —period 3.00 CLK333
set case _analysis 1 SEL

CLK250 FE1
‘ I by . §
3 L~
CLK333 >— |
FF2
0 oo &
SEL —— |12

© 2006 Synopsys, Inc. (11)

CLK250
> ‘0 [ED EE> >FH
CLK333 Commmt
1 FF2
SEL >— | [E> EE> P
SYNOPSYS

Predictable Success

I
SU{] Combining Modes: An Example

SAN JOSE

2007

* Analyzed together, we could combine these modes
together with the following commands:

= Need set_clock groups to prevent CLK250—~CLK333 paths

modes 0&1 combined:

create clock —period 4.00 CLK250
create clock —period 3.00 CLK333
set _clock groups —logically exclusive —group CLK250 —group CLK333

Ty — Lfﬂ

CLK333 [Commm

FF2

o) b
syorsys
Predictable Success

caesar
Note
difference between false path and clock group on SI.

if two clocks are set as false path, the arrival window is infinite, this is a little pessimistic

but for exclusive clock group, it will ignore the SI effect each other.

\
SIJ(] Combining Modes: Limitations

SAN JOSE

2007

* On the surface, it seems like combining modes is the
way to go!

= Fewer runs to get the same amount of work done

* However, there are drawbacks to combining modes
= Timing pessimism
= Increased memory/runtime

= |Increased script complexity

* Let’'s examine each of these areas in more detalil...

© 2006 Synopsys, Inc. (13) Sy"upsysw

Predictable Success

%[} Agenda

SAN JOSE

2007

* Where Multiple Analyses Come From
* Combining Modes

= Introduction

= Timing Pessimism

= Memory/Runtime Requirements
= Script Complexity

* Distributed Multi-Scenario Analysis (DMSA)

= Introduction and Setup

= Features

= Example: Hold-Fixing
°* Summary

© 2006 Synopsys, Inc. (14) Sy"upsysn

Predictable Success

Combining Modes:

A Slew Propagation Pessimism
2007

* PrimeTime computes both min and max timing for
every timing arc in the design

Wl

= Fast slews always propagated for min-delay computation
= Slow slews always propagated for max-delay computation

~,

min’_%iy
o,

“-\a‘I\’ ga&\o(\
Q(096

© 2006 Synopsys, Inc. (15) Sy"upsysw

Predictable Success

m

Combining Modes:

A Slew Propagation Pessimism
2007

* In the example circuit below:

Wl

= CLK250 propagates a slow slew (red) into the clock network
= CLK333 propagates a fast slew (green) into the clock network

FF1
CLK250 > >
max

In

>

© 2006 Synopsys, Inc. (16) Sy"upsysw

Predictable Success

CLK333 ™>

S5

Combining Modes:

A Slew Propagation Pessimism
2007

* When the modes are analyzed separately:

Wl

= The clock buffers have slow min and max delays in mode 0

= The clock buffers have fast min and max delays in mode 1

mode O: mode 1:

C'-K25°Lny- :ny- |\/ {>_ FF1 CLK250 / _/- S _/- {>_ FF1

> >
S [2N ElE
cLkazs ‘ y |\/ {>_>FF2 CLK333 " ‘ T/- o m_ir/-{>_>|=|=2
o S A

© 2006 Synopsys, Inc. (17) Sy"upsysw

Predictable Success

Combining Modes:

A Slew Propagation Pessimism
2007

* However, when the modes are analyzed together, both
clocks propagate into the network:

= The slow CLK250 slew (red) is used for max-delay propagation
= The fast CLK333 slew (green) is used for min-delay propagation

CLK250_/- _/_ l\—/_ {>_>|:F1 I
D7|_ A
CLK333 rir/_‘ 1 _/_ I_/_ >>FF2

A

© 2006 Synopsys, Inc. (18) Sy"upsysw

Predictable Success

Wl

Combining Modes:

A Slew Propagation Pessimism
2007

* Setup paths use max-delay launch, min-delay capture

Wl

= For setup path in CLK250 domain, capture is pessimistic

= For setup path in CLK333 domain, launch is pessimistic

min B
CLK250 _/- FF1
IU\1 {}o
0
1 P
CLK333
% {}o
“f -

N

SYNOPSYS

Predictable Success

Combining Modes:

A Slew Propagation Pessimism
2007

* Hold paths use min-delay launch, max-delay capture

Wl

= For hold path in CLK250 domain, launch is pessimistic

= For hold path in CLK333 domain, capture is pessimistic

CLK250
os=——{ 0t
v \ -
0
1 P
CLK333 FF2
U3 %—>

A A

3

SYNOPSYS

Predictable Success

Slew Propagation Pessimism:

)
sl!,[] What Have We Learned?
2007

* When multiple operating modes are collapsed together, a loss of
information (and accuracy) must occur

= A timing arc can only have a single set of min/max timing behaviors

= The only safe behavior is to keep the most pessimistic min/max timing
across all modes, and then use that timing for every mode

mode 0 mode 1 modes 0&1 combined

* Analyzed separately, each operating mode has its own unique timing
= Every analysis is accurate

syorsys
Predictable Success

Combining Modes:

M4 Cross-Clock Sl Interactions
2007

* When we bring Sl into the picture, things get more
complicated

Wl

= Let's add some coupling and see what happens...

CLK250

n1
U1 pb >
0

CLK333 1 <—>

SEL &>——

SYNOPSYS

Predictable Success

Combining Modes:

M4 Cross-Clock Sl Interactions
2007

* When the modes are analyzed separately (mode O
shown):

Wl

= Only a single frequency clock is present on n1 and n2
= The edge on n1 is always later than the edge on n2

= Qverlap can never occur (regardless of this single clock’s
frequency) so no delta delays occur on either net

CLK333 O>——

‘ FF2 n2
U3 i >
SEL C——
syorsys
Predictable Success

Combining Modes:

M4 Cross-Clock Sl Interactions
2007

* When the modes are analyzed together:

Wl

= Both clocks are seen on both nets

= Crosstalk interactions between the clocks are probable
* In fact, they are a certainty if the clocks are asynchronous

CLK250 |:>_|- FE1 _‘ y u
n1
p» p u3 > — -

CLK333 >— p— |_

FF2 n2
Ul n2 >
SEL >— |

© 2006 Synopsys, Inc. (24) Sy"upsysw

Predictable Success

Combining Modes:

)
sl![] Cross-Clock Sl Interactions
2007

* To handle this, clocks can be made physically exclusive

= Interactions between physically exclusive clocks are not
considered

= We will revisit the concept of physically exclusive clocks a little
later

n1

CLK250

n2
CLK250 D_I- FE1 —‘
n1
py p Ul >

1 p— |_ n1 I_L

CLK333 [Commm —

O3 n2 >FF2 CLK333
SEL °—— B
n2 J_I

Syorsys
Predictable Success

Combining Modes:

Window Merging Within Clock Domain

* Combining modes can cause pessimism even within a
single clock domain

Wl

* In the example circuit below:

= \We select between the normal and delayed version of a clock
= The clock net couples to some other net in the design

D LT

CLK333 >

SEL >

© 2006 Synopsys, Inc. (26) Sy"upsysw

Predictable Success

Wl

Combining Modes:

B Window Merging Within Clock Domain

2007

* When the modes are analyzed separately:

= The non-delayed mode has an early arrival window on n1
= The delayed mode has a late arrival window on n1
= Both arrival windows are narrow

0
CLK333 > | 1

mode O:

1

n

CLK333 :\;l !

SEL & in SEL & B
onors

Predictable Success

Combining Modes:

Window Merging Within Clock Domain

* However, when the modes are analyzed together, both
clocks propagate into the network:

= All possible arrival windows for the clock are merged together
= A single wide arrival window results

= The middle section in red represents the pessimistic portion of
the window which could not occur in either mode

* . aggressor

rD-D-D_o n1 | S
CLK333 > A

SEL &> | — i

© 2006 Synopsys, Inc. (28) Sy"upsysw

Predictable Success

Wl

Combining Modes:

M Pessimism Effects Interact
2007

* The different causes of pessimism...

= slew merging pessimism
= S| pessimism across clocks
= window merging pessimism within clock domain

e ...do interact with each other

Wl

* Let's take a look at some examples to see how these
effects interact and compound

© 2006 Synopsys, Inc. (29) Sy"upsysw

Predictable Success

Pessimism Effects Interact:

i Example #1
2007

* In the example circuit below:

Wl

= \We have slew merging pessimism across modes
= Nets n1 and n2 are coupled

v DD
CLK250 11 | FF1
— IBD»IB?» U3 D>

in
N2 FF2
U4 >
wi :

SYNOPSYS

Predictable Success

Pessimism Effects Interact:

A Example #1
2007

* When the modes are analyzed together:

= Window alignment is found which isn’t possible in either mode
(due to the difference in buffer delays)

= These victim/aggressor calculations also use a min/max slew
combination which isn’t possible in either mode

Wl

CLK250 L"V- _/_ FF1
A [PPP L

CLK333 2 2
% n S n
nfy_ I/ max

© 2006 Synopsys, Inc. (31) Sy"upsysw

Predictable Success

Pessimism Effects Interact:

A Example #2
2007

* In the example circuit below:

Wl

= We have slew merging pessimism across modes
= There are multiple coupled stages downstream of the slew merge

DATO ./ = reccccmmim——— cccee

=z T
o o PR
rrfy_ _____ n4_|_

min
ax

MODE
=

© 2006 Synopsys, Inc. (32) Sy"upsysw

Predictable Success

Pessimism Effects Interact:

A Example #2
2007

* When the modes are analyzed together:

= Slew merging pessimism causes the min/max timing of buffers
U1-U3 to widen

= n1is attacked by n2 although it couldn’t happen in either mode
= Now the window/slews on n3 pessimistically attack n4...

oaro —
IEZ L

DAT1 ”lr/_ [
e S T R

© 2006 Synopsys, Inc. (33) Sy"upsysw

Predictable Success

Wl

Combining Modes:

M Pessimism Effects Interact
2007

* And of course these effects continue to propagate...

= Pessimistic slews yield pessimistic arrival/slew timing
= These pessimistically-timed nets attack other victim nets

= Those aggressions widen their downstream windows, worsen
their downstream slews
= The process continues... across both clock and data logic!

RS
v

cu<25olny- I: I: FFl—‘ ----- 1T v 1
V-O I>::> ?‘[>'l>'[>_ I|> J—

min L |
CLK333 _/— =l I
= [:> S r | ————-
e —

MODESEL
=

© 2006 Synopsys, Inc. (34) Sy"upsysw

Predictable Success

Wl

Pessimism From Combining Modes:

)
sl!:[] What Have We Learned?
2007

* When different modes are merged together:

= Slew merging pessimism occurs

= S| pessimism across clocks occurs

= Window merging pessimism within clock domain occurs
= These effects interact and compound

* The resulting merged-mode timing is more pessimistic
than any of the original modes

= The resulting analysis is safe but pessimistic
= PrimeTime is doing the right thing, but with pessimistic input

= \We have indeed reduced the number of runs, but at an
accuracy cost

syorsys
Predictable Success

%[} Agenda

SAN JOSE

2007

* Where Multiple Analyses Come From
* Combining Modes

= Introduction
= Accuracy Impact
= Memory/Runtime Requirements
= Script Complexity
* Distributed Multi-Scenario Analysis (DMSA)

= Introduction and Setup

= Features

= Example: Hold-Fixing
°* Summary

© 2006 Synopsys, Inc. (36) Sy"upsysn

Predictable Success

Combining Modes:

A Analysis Memory/Runtime
2007

* When combining runs together, memory and runtime increase

Wl

* To understand why, let’s look at how PrimeTime stores the timing
data for the following example circuit:

CLK250 |:>—[> L - ‘ >

CLK333 > [

* Since PrimeTime deals with timing arcs, let’s represent this
circuit using timing arcs:

© 2006 Synopsys, Inc. (37) Sy"upsysw

Predictable Success

Combining Modes:

A Analysis Memory/Runtime
2007

* PrimeTime computes the timing in two passes

i

= Pass #1: timing arc min/max delays and slews are computed

» Arc delays and slews are merged across multiple clock domains

© 2006 Synopsys, Inc. (38)

min: 0.2

max: 0.4

min: 0.8

min: 0.1

max: 1.2

max: 0.2

min: 1.1

max: 1.4

min: 0.2

min: 1.2

min: 0.1

min: 0.7

max: 0.3

max: 1.5

max: 0.2

max: 0.9

min: 0.3

min: 1.0

max: 0.5

max: 1.3

SYNOPSYS

Predictable Success

Combining Modes:

)
s,..q,ss Analysis Memory/Runtime
2007

= Pass #2: merged arc delays are used to propagate pin arrival times
 Arrival times are computed per clock domain

CLK250

min: 0.2

CLK250

CLK250

CLK250

CLK250

CLK250

max: 0.4

min: 1.0
max: 1.6

CLK250

min: 1.1

min: 2.2
max; 3.2

min: 2.4
max: 3.5

min: 3.6
max: 5.0

min: 3.7
max: 5.2

CLK250

CLK333

CLK333

CLK333

min: 4.4
max: 6.1

CLK333

min: 1.5

min: 2.7
max: 3.6

min: 2.8
max: 3.8

CLK333

min: 3.5
max: 4.7

max: 1.8 max: 2.1

min: 1.3
max: 1.8

CLK333
min: 0.3
max: 0.5

SYNOPSYS

Predictable Success

© 2006 Synopsys, Inc. (39)

Combining Modes:

i Analysis Memory/Runtime
2007

* As the number of simultaneous clock domains
Increases:
= The memory required to store all the arrivals increases

= The runtime required to compute and propagate the
delays/slews increases

Wl

© 2006 Synopsys, Inc. (40) Sy"upsysﬂ

Predictable Success

Combining Modes:

Ad Analysis Memory/Runtime
2007

* Below is some data from real customer designs

Wl

= “Original Clocks” is the analysis with original clocks

= “Duplicated Clocks” is the analysis with a second set of
physically exclusive clocks with slightly different clock periods

% difference

memory CPU memory
973 s 826 MB 1276 s 998 MB +31% +21%
1373s| 1.28 GB 1483s| 1.47 GB +8% +15%
2832s| 4.40GB 4136s| 6.40GB +46% +45%
6051 s 3.11GB 7351s| 3.52GB +21% +13%

2000 Syopeys, . (41 SYNOPSYS

Predictable Success

Analysis Memory/Runtime:

)
sl!:[] What Have We Learned?
2007

* As we combine modes and add more clocks:

= More time is needed for extra delay calculations and clock
propagation
= More memory is needed to store each clock’s arrivals
= These per-clock arrivals are computed using the worst arc
value across all clocks
* We have indeed reduced the number of runs, but at a
memory, runtime and accuracy cost

SYNOPSYS

© 2006 Synopsys, Inc. (42)
Predictable Success

%[} Agenda

SAN JOSE

2007

* Where Multiple Analyses Come From
* Combining Modes

= Introduction

= Accuracy Impact

= Memory/Runtime Requirements
= Script Complexity

* Distributed Multi-Scenario Analysis (DMSA)

= Introduction and Setup

= Features

= Example: Hold-Fixing
°* Summary

© 2006 Synopsys, Inc. (43) Sy"upsysn

Predictable Success

Combining Modes:

d Script Complexit
2007 P P Y

* Let’s revisit this example circuit:

CLK250 D—I- FE1
n1
>
0

CLK333 [Sommm — |_

n2 FF2
SEL >—— 4| u4> D>

* We mentioned that physically exclusive clocks would allow us to
tell PrimeTime Sl to ignore Sl interactions between CLK250 and
CLKS333:

Wl

set clock groups —physically exclusive \
—group CLK250 —group CLK333

* This is great! There must be a catch...

© 2006 Synopsys, Inc. (44) Sy"upsysw

Predictable Success

Combining Modes:

d Script Complexit
2007 P P Y

* The catch is, it may not be safe to suppress all CLK250—~CLK333
Sl interactions

= These clocks are only physically exclusive downstream of the mux
= There could be real interactions before the clocks are muxed together:

Wl

CLK250 and CLK333 won’t interact here

n3 \
n1i
S>>

0

CLK333 D—[> | L — |
> >FF2
SEL >

but they definitely could here!

© 2006 Synopsys, Inc. (45) Sy"upsysw

Predictable Success

H® Combining Modes:

d Script Complexit
2007 P P Y

* We can address this by:

= creating generated clock versions of the original clocks on the mux input pins
= applying the physically exclusive property only on these generated clocks
= making the two frequency domains asynchronous (since now we realize there

really could be interactions)

create_clock —period 4.00 [get ports CLK250]
create clock —period 3.00 [get ports CLK333]

—source [get_ports CLK250] [get _pins UMUX/A]

—source [get_ports CLK333] [get _pins UMUX/B]

/| create_generated_clock —name CLK250_mux —combinational \

create_generated_clock —name CLK333 mux —combinational \

set_clock _groups —physically_exclusive —group {CLK250 mux} —group {CLK333 mux}
\ set_clock=groups —asynchronous —group {CLK250 CLK250=mux} —group {CLK333 CLK333=mux} /

CLK250 |:>—>_”_3|-

n4 1

CLK333 >

n1

n2

>

FF1

SEL > |

© 2006 Synopsys, Inc. (46)

FF2

SYNOPSYS

Predictable Success

Combining Modes:

\
saulJJosz Script Complexit
2007 P P Y

* We have gone from two separate runs varying a mode select...

create_clock —period 4.00 [get_ports CLK250] create_clock —period 4.00 [get_ports CLK250]
create _clock —period 3.00 [get ports CLK333] create _clock —period 3.00 [get ports CLK333]
set_case_analysis 0 [get ports SEL] set_case_analysis 1 [get ports SEL]

* ...to a single run with this:

create _clock —period 4.00 [get ports CLK250]
create_clock —period 3.00 [get_ports CLK333]
create_generated_clock —name CLK250_mux —combinational \
—source [get ports CLK250] [get pins UMUX/A]
create_generated _clock —name CLK333 mux —combinational \
—source [get ports CLK333] [get pins UMUX/B]
set_clock groups —physically _exclusive —group {CLK250 mux} —group {CLK333 mux}
set_clock groups —asynchronous —group {CLK250 CLK250 mux} —group {CLK333 CLK333 mux}

* We reduced the number of runs, but at a complexity cost

= This process must be repeated for every pin where clocks are combined

syorsys
Predictable Success

Script Complexity:

)
sl!,[] What Have We Learned?
2007

* When combining modes, timing and Sl interactions
between modes must be carefully considered

= Know what clock relationships should and shouldn’t be applied

= Analysis scripts with combined modes require additional
scripting complexity to apply the correct relationships

* To be fair, these are not showstopper effects

= For some designs, the accuracy, memory, runtime, and
complexity effects may be minimal

= Sometimes combined modes are the only option!
* The goal of this section is to provide knowledge to:

= Know which modes are good merge candidates and which aren’t
= Know what to look for as you combine different modes

syorsys
Predictable Success

Merging Modes:

\
sl!,[] What Have We Learned?
2007

* Merging modes is a balancing act

| Merged modes? | | Separate modes? |

fewer runs more runs
more memory/runtime per run less memory/runtime per run
some pessimism better accuracy
more script complexity less script complexity

* Merging modes is not always a bad thing

= For some designs, the accuracy, memory, runtime, and complexity
costs may be minimal

* Again, the goal of this presentation is to provide the knowledge to:
= Know which modes are good merge candidates and which aren’t

syorsys
Predictable Success

%[} Agenda

SAN JOSE

2007

* Where Multiple Analyses Come From
* Combining Modes

= Introduction
= Accuracy Impact
= Memory/Runtime Requirements
= Script Complexity
* Distributed Multi-Scenario Analysis (DMSA)

= Introduction and Setup
= Features
= Example: Hold-Fixing

°* Summary

© 2006 Synopsys, Inc. (50) Sy"upsysn

Predictable Success

What Is Distributed Multi-Scenario

il
e Analysis (DMSA)?
2007 Y ()

* DMSA provides efficient unified analysis of multiple
PrimeTime analyses (or scenarios) from a single master
PrimeTime

= We can work with multiple analyses as easily as with a single
PrimeTime analysis run!

|- |
DMSA = pr U = pr U
M network connectionS...l.a...v..f %ﬂgﬁg o
I |
) =J\ [0 e [
= = a PT apr U
slave slave

syorsys
Predictable Success

DMSA Uses Independent Accurate

)
sl![] Analyses
2007

* Each scenario in a DMSA run is a full PrimeTime
analysis which can have its own unique:

= delay and slew timing
= detailed parasitics
= PrimeTime variable settings

= efc.
CLK333 CLK333] | CLK333 CLK333] | CLK333 CLK333] | CLK333
min- O 8 Qo090 min- 1 8 Qin-1.0 min- 3 2 min: 3.3 min: 4.3
I CLK333 CLK333] | CLK333 CLK333] | CLK333 CLK333] [CLK333] max:3.7] |[max: 4.8

min- N 8 min-10 Qo190 min- 20 min- 3 A min: 3.8 min: 4.9 ‘,‘ s
CLK400 CLK400] | CLK400 CLK400] JCLK400 CLk400] [cCk200] [max:4.3] |max:5.5 |]
min: 0.8 min: 0.9 min: 1.9 min: 2.0 min: 2.9 min: 3.3 min: 4.4 "..
max: 0.9 max: 1.7 |max: 2.2 max: 2.4] [max: 3.6 max: 3.8] [max: 4.9 5
} } 4 scenario N

FF1 L~ e scenario 2

> scenario 1

syorsys
Predictable Success

)
SIJ[J Setting Up DMSA

SAN JOSE

2007

* To set up a DMSA run, three key components must be
configured:

= Number of licenses
= Number of remote slave processes
= Scenario definitions

* Let’s take a look at how these are configured

. — |
PT license o PT 1
) ' slave
RN NN RRRIRRRRRNAR analysis

script(s)

2000 Syopeys,n. (59 SYNOPSYS

Predictable Success

Setting Up DMSA.

e Configuring Licenses
2007

* We give DMSA the upper limit for the number of licenses
to use
= A minimum of one is needed to do any work
= Additional licenses are pulled from the license server as needed
= The master does not require an extra license

* In the example below:
= We allow DMSA up to 4 PrimeTime and PrimeTime-SI licenses

e
e

PT license

Wl

DMSA
MASTER RLEELERLEREEELLLD E

pull up to 4 PrimeTime and PrimeTime SI licenses . PT license :

set_multi_scenario_license limit -feature PrimeTime 4 . .
L= set_multi_scenario_license_limit -feature PrimeTime-SI 4 : PTlicense
= : PTlicense

SYrSYS
Predictable Success

Setting Up DMSA.

A Configuring Remote Processes
2007

* We give DMSA information on the remote processes
to invoke

= Compute farms are supported (LSF, GRD, proprietary)

= Discrete named machines can be given

= A mix of platforms (linux, sparc, 32/64-bit, etc.) can be used
* In the example below:

= We ask DMSA to invoke 4 processes on an LSF farm

Wl

remote pt_shells

DMSA

MASTER [0 [0
add four LSF remote processes g pr [g pr [
add_distributed hosts \ Slave Siave
-32bit -farm Ist -num_of hosts 4 \ ——>
—options -0 $multi_scenario_working_directory™ \ g o7 [g o7 [
-submission_script [sh which bsub] slave slave
T OO

Syorsys
Predictable Success

Setting Up DMSA.

A Defining Scenarios
2007

* The analysis scenarios are defined in one of two ways:

Wl

= Providing PrimeTime scripts which load/constrain the analyses:

DMSA
MASTER \
]]
P!

= Providing existing PrimeTime saved sessions:

[[

S ——— SYNOPSYS

Predictable Success

Setting Up DMSA.

W Defining Scenarios Using Scripts
20

Wl

* |If you have a different script for each scenario, just
point to the proper script for that scenario definition

pt_func_bc.tcl pt_test bc.tcl pt_func_wc.tcl pt_test wc.tcl

SYNOPSYS

Predictable Success

Setting Up DMSA.

e Defining Scenarios Using Scripts
2007

Wl

°* The more common case is a single analysis script using
variables to control which mode/corner is analyzed

= Below, mode and corner control the analysis

SYNOPSYS

Predictable Success

Setting Up DMSA.

i Defining Scenarios Using Scripts
2007

* In this case, we simply vary these variables across
their different combinations and create scenarios:

\l

corner=bc
foreach corner {bc wc} { mode=func
foreach mode {func test} {
create_scenario \ SOIE =
-name ${mode} ${corner} \ mode=test
—specif!c_variables {mode_corner} \ . .
) -specific _data {pt analysis.tcl} mode=func ot_analysis.tcl
} corner=wc
mode=test

= The -specific_variables option “pushes” a variable’s
current master value into the scenario

 How does this work?

syorsys
Predictable Success

Setting Up DMSA.

\l

i Defining Scenarios Using Scripts

2007

* Using —speciftic_variables in a scenario definition can be

thought of as:
= invoking a PrimeTime session
= setting the specified variables
= sourcing the scenario script

master script: =S
MASTER|

set corner wc : |

set mode func /J/ ==iL\

create _scenario \
-name func wc \
-specific variables {mode corner}}*—

>

remote pt_shell:

set corner {wc}
set mode {func}

-specific _data {pt _analysis.tcl} }

© 2006 Synopsys, Inc. (60)

source pt_analysis.tcl

SYNOPSYS

Predictable Success

Setting Up DMSA.

Defining Scenarios Using Sessions

* You can also define scenarios with saved sessions:
yaR

sessions/

* SolvNet article 018039 provides a Tcl procedure to
easily restore a directory of saved sessions:

R

sessions/

© 2006 Synopsys, Inc. (61) Synﬂpsysm

Predictable Success

Wl

create _scenario \
-name func_wc —image| sessions/func_wc

create _scenario \ \
-name func_bc —image| sessions/func_bc}

restore _dmsa_session sessions/ >

%[} Agenda

SAN JOSE

2007

* Where Multiple Analyses Come From
* Combining Modes

= Introduction

= Accuracy Impact

= Memory/Runtime Requirements
= Script Complexity

* Distributed Multi-Scenario Analysis (DMSA)

= Introduction and Setup

= Features

= Example: Hold-Fixing
°* Summary

© 2006 Synopsys, Inc. (62) Sy"upsysn

Predictable Success

)
SU[] Flexible License Management

SAN JOSE

2007

* When (# licenses) < (# remote processes):

= The master distributes licenses to the remote processes

= When a task finishes at a remote process, the license is freed to
be immediately used by another process

= Remote processes are not terminated to free license

PT license

[|I:II:I [|I:II:I
= PT a PT
slave \ / slave
active oA (waiting)
MASTER
| |
I] pT [/ , .=.\ \ |=].I:|P'I|':I
slave = =\ S — slave
PT license
(waiting) active

© 2006 Synopsys, Inc. (63) Sy"upsysw

Predictable Success

I
SIJ[J Flexible Machine Management

SAN JOSE

2007

* When (# remote processes) < (# scenarios):

= Scenario images must be swapped to disk to execute the task
across all scenarios

* This is expensive in terms of disk activity and runtime
= This should be avoided unless absolutely necessary!

y— image swapping <4
DMSA
MASTER

%ﬂlﬂ:l
[| ..-..'-.-----'--.b» UpT

slave

active

© 2006 Synopsys, Inc. (64) Synﬂpsysm

Predictable Success

)
SU(] Merged Reporting

SAN JOSE

2007

* We have seen that DMSA lets us easily run all
scenarios together

* The big payoff is that we can also easily analyze all
scenarios together!

= The easiest method is using merged reporting, where we can
Issue reporting commands across all scenarios

* Merged reporting significantly helps complexity
management when there are many scenarios

= Let’s take a look at some example reports...

© 2006 Synopsys, Inc. (65) Sy"upsysw

Predictable Success

I
SU[] Merged report_timing

* To see the 10 worst paths in each path groups across all
scenarios, we simply issue:

S
report_timing —max_paths 10 slave [18 slave

DMSA — LI.I.LI.I.LI.LI.I.I.LI.I.LLLIS7 PT I:l
MASTER

Paths from all scenarios in focus

/ slave
] I gr—l TIITIIIIIIIIT m-\5 I:I|:|
== pT U] - PT
)/ J\ — Sl S8 |:I|:|§ slave
g pr U

_ |
(10 paths per group per scenario) [S ave]
83 Ilﬂ [JIRERRRRIRNRinn| I56 D
PT PT
10 paths per group slave slave
across all scenarios T T

* DMSA automatically merges the results across all scenarios,
saving us from sifting through hundreds of nearly identical reports

= Topological duplicates are automatically removed

syorsys
Predictable Success

)
U[] Merged report_timing

2007

* Merged reports typically include the scenario name in
the report

= Below is a timing report from report_timing

Startpoint: m_wb_ack 1 (input port clocked by wb_clk 1)
Endpoint: core/wishbone/lIncrTxPointer_reg
(rising edge-triggered fTlip-flop clocked by wb clk 1)

Path Group: 1nputs

Path Type: max
 Scenario: func_wc

Max Data Paths Derating Factor : 1.00

Min Clock Paths Derating Factor : 0.95

Max Clock Paths Derating Factor : 1.00

syorsys
Predictable Success

Merged report_timing

2007

* We can also use “-path_type end” to see path
summaries listed with scenario and slack columns

pt_shell> report_timing -path_type end -max_paths 10 —delay min

Endpoint Path Delay Path Required Slack Scenario
Busy IRQ _sync2 reg/D (DFQD1)
RxAbortSync4 reg/D (DFCNQD1)
ethregl/SetTxClrqg_sync3 reg/D (DFCNQD1)
SendControlFrame_sync3 reg/D (DFCNQD1)
WriteRxDataToFifoSync3 reg/D (DFCNQD1)
miiml/RStat_g2_reg/D (DFCND1)
SyncRxStartFrm_qg_reg/D (DFCND1)

Busy IRQ sync3 reg/D (DFQD1)
WriteRxDataToFifoSync2 reg/D (DFCND1)
miiml/EndBusy reg/D (DFCND1)

syorsys
Predictable Success

eoloNololoNoNololNoNe
o1
(00}
=h =h =h =h =h =h =h =h =h =
eololololoNoNololNoNe
1N
(@))
|
o
o
ol
O
(@]

\
SIJ[] Merged report_si_bottleneck

SAN JOSE

2007

°* The merged report_si_bottleneck shows the
worst victims across all scenarios

= Great for finding and fixing the worst crosstalk problems
across all scenarios

SYNOPSYS

Predictable Success

\
SIJ(] ECOs Across Scenarios

SAN JOSE

2007

* All the usual ECO commands are available:
= size_cell

insert buffer

remove buffer

create cell, create net

remove_cell, remove net
= connect _net, disconnect_net

° You can resize a cell or insert a buffer and
iImmediately see the results across all scenarios

= All scenarios update incrementally

© 2006 Synopsys, Inc. (70) Sy"upsysw

Predictable Success

%[} Agenda

SAN JOSE

2007

* Where Multiple Analyses Come From
* Combining Modes

= Introduction

= Accuracy Impact

= Memory/Runtime Requirements
= Script Complexity

* Distributed Multi-Scenario Analysis (DMSA)

= Introduction and Setup

= Features

= Example: Hold-Fixing
°* Summary

© 2006 Synopsys, Inc. (71) Sy"upsysn

Predictable Success

DMSA Example:

e Hold-Fixing Across Scenarios
2007

* How can we fix hold violations in all scenarios without
introducing setup in any scenarios?

Wl

= Furthermore, how can we optimize the buffer placement to
minimize the buffer insertion count?

A
B Ul A
>|:F1 c o
B FF2
) - ,
FF3
> N
FF4 L~
>

EE5S (setup violation only)

© 2006 Synopsys, Inc. (72) Sy"upsysw

Predictable Success

DMSA Example:

e Hold-Fixing Across Scenarios
2007

* In our example circuit below:

= The worst hold violation goes through U1/A
= Sub-critical hold violations go through U1/B and U1/C
= A critical setup path comes in on a side pin

Wl

AM

(setup violation only)

© 2006 Synopsys, Inc. (73)

SYNOPSYS

Predictable Success

DMSA Example:

e Hold-Fixing Across Scenarios
2007

* Priority #1 is to work on the worst hold violating path in
a cloud of logic

Wl

= Below, we want to improve hold slack along the bolded path

A
B U1 A
FF1 ° U
B FF2
FF3 l:
> [oa>
FF4 L~
>

(setup violation only)

SYNOPSYS

Predictable Success

DMSA Example:

e Hold-Fixing Across Scenarios
2007

* Priority #2 is to find the pin associated with the largest
number of hold violations

Wl

= Below, we prefer the indicated pins which have three hold
violations through them

FF1 ° U y
> B F2
4% >
FF3
> Iu\4
FF4 L~
>

EE5S (setup violation only)

© 2006 Synopsys, Inc. (75) Sy"upsysw

Predictable Success

DMSA Example:

e Hold-Fixing Across Scenarios
2007

* Priority #3 is to find the pin with the largest setup slack

Wl

= Below, the indicated pins have the most setup slack “room”
to tolerate additional delay

A
B Ul A
>|:F1 c o
B FF2
) - ,
FF3
> N
FF4 L~
>

EE5S (setup violation only)

© 2006 Synopsys, Inc. (76) Sy"upsysw

Predictable Success

DMSA Example:

e Hold-Fixing Across Scenarios
2007

* Priority #4 is to prefer load pins

Wl

= If the two pins are otherwise identical (same # paths, slack, etc.),
inserting a buffer at the load pin has more predictable delay

A I:
B U1 A
B FF2

_| F >
FF3 N

> u3
FF4 L~

D>

(setup violation only)

FF5

© 2006 Synopsys, Inc. (77) Sy"upsysw

Predictable Success

DMSA Example:

e Hold-Fixing Across Scenarios
2007

* Each scenario has unique min/max rise/fall timing

\l

= Inserted delay cells have different timing characteristics in each
scenario (depending on PVT corner, voltage, parasitics, etc.)

scenario 1
CLK400 CLK400] | CLK400 CLK400| | cLK400 CLK400| | cLK400 CLK400
min: 0.8 min: 0.9 min: 1.9 min: 2.0 min: 2.9 min: 3.3 min: 4.4 min: 4.6
max: 0.9 max: 1.7] |max: 2.2 max: 2.4| |max: 3.6 max: 3.8] |max: 4.9 max: 5.3
\ I\ scenario 2
. d ' - . d : K333] [cLk333
FF1 / DK I/ FF2 49 min: 5.1
> insert buffer > x59) [maxS.7 .
— ¢ scenario N
: : : ' - . : : kaoo] [cikao0
FF1 / >K / FF2 4.4 min: 4.6
> insert buffer > Jﬁ max: 5.3
FF1 L~ >\\ L~ FF2
> insert buffer >

syorsys
Predictable Success

DMSA Example:

e Hold-Fixing Across Scenarios
2007

* This DMSA hold-fixing script is available in SolvNet

= Fixes hold violations while considering setup requirements
across all scenarios

= Considers the timing and slack of every scenario thoroughly

= Finds optimal placement for delay according to cost factor
previously described

* This script is just one example of the power of DMSA!

Wl

018510: "Fixing Hold Violations Across
Many Modes and Corners with DMSA"

http://solvnet.synopsys.com/retrieve/018510.html

syorsys
Predictable Success

\
SU[J Learning More About DMSA

SAN JOSE

2007

* Your Synopsys AC can deliver a more detailed
training presentation which goes into more detail on:
= setting up DMSA

= available features and
commands

Distributed Multi-Scenario
Analysis (DMSA Z-2006.12)

Chris Papademetrious

= using existing STA scripts PrimeTime CAE

SYNOPSYs

Predictable Success

© 2006 Synopsys, Inc. (80) Sy"upsysﬂ

Predictable Success

Distributed Multi-Scenario Analysis:

)
sl!:[] What Have We Learned?
2007

Modes and corners are increasing in number!

= Corner analyses cannot be combined

= QOperating modes can be combined by trading off accuracy and
capacity

DMSA enables easy setup and execution of large numbers of
analyses

DMSA allows you to manage precious machine and license
resources

With DMSA, the goal is for you — the engineer — to be able to get...
¥ O

= with less effort '
- L)

= the most accurate signoff analysis
= in less time

= and with fewer machine/license resources

syorsys
Predictable Success

Wil oea

SAN JOSE

2007

* Feel free to ask any questions!

= | have the DMSA technical training slides available if we
need them

P ——— SYNOPSYS

Predictable Success

SYNOPSYS

Predictable Success

SYNOPSYS

eeeeeeeeeeeeeeeeee

