
Predictable Success

How (and Why!) To Use
PrimeTime’s Distributed Multi-
Scenario Analysis

Chris Papademetrious
PrimeTime CAE

© 2006 Synopsys, Inc. (2)

Predictable Success

About This Presentation

• This presentation explores:
� …why people need multiple STA analyses
� …how they are sometimes combined together
� …the advantages and disadvantages of merging analyses

together versus analyzing them separately
� …how PrimeTime’s DMSA can help you get the most

accurate analysis, in less time, with less user effort, and
fewer resources

• This presentation does not:
� …cover slide after slide of boring DMSA command syntax

without teaching you why the feature is worth learning in the
first place!

• Your local Synopsys AC would be happy to give that ☺

© 2006 Synopsys, Inc. (3)

Predictable Success

Agenda

•• Where Multiple Analyses Come FromWhere Multiple Analyses Come From
• Combining Modes

� Introduction
� Accuracy Impact
� Memory/Runtime Requirements
� Script Complexity

• Distributed Multi-Scenario Analysis (DMSA)
� Introduction and Setup
� Features
� Example: Hold-Fixing

• Summary

© 2006 Synopsys, Inc. (4)

Predictable Success

Where Multiple Analyses Come From

• The two primary causes of multiple analyses:
� multiple operating modes
� multiple analysis corners

• What are they?

© 2006 Synopsys, Inc. (5)

Predictable Success

Where Multiple Analyses Come From

• A design typically has multiple operating modes
� Multiple mission modes

• Different clock frequencies
• Different clock muxing configurations
• Different configuration constants to control logic behavior

� Multiple test modes
• ATPG scan shift
• ATPG scan capture
• BIST modes
• JTAG

© 2006 Synopsys, Inc. (6)

Predictable Success

Where Multiple Analyses Come From

• A design must reliably operate across:
� its specified range of voltage/temperature (VT) conditions:

the chip’s environment
� the range of possible process/interconnect (P) conditions:

the chip’s manufacturing characteristics

• A specific set of conditions (environmental VT and
manufacturing P) is called a corner

© 2006 Synopsys, Inc. (7)

Predictable Success

• STA must pass in every operating mode under every PVT corner
condition
� These terms multiply:

• That’s a lot of analyses!

Where Multiple Analyses Come From

operating modes int
erc

on
ne

ct

co
rne

rsde
vi

ce
 V

T
co

rn
er

s

© 2006 Synopsys, Inc. (8)

Predictable Success

Simplifying the Problem

• Designers sometimes try to reduce the number of runs
using various techniques:
� Skipping certain mode/corner combinations entirely
� Limiting corner combinations and adding more margin
� Combining similar operating modes together

• The first two are simply omissions of corner analyses
based on engineering judgment

• The third - whether to combine operating modes
together or keep them separate - is our focus
� Let’s talk more about this…

© 2006 Synopsys, Inc. (9)

Predictable Success

Agenda

• Where Multiple Analyses Come From
• Combining Modes

�� IntroductionIntroduction
� Accuracy Impact
� Memory/Runtime Requirements
� Script Complexity

• Distributed Multi-Scenario Analysis (DMSA)
� Introduction and Setup
� Features
� Example: Hold-Fixing

• Summary

© 2006 Synopsys, Inc. (10)

Predictable Success

• Consider the following example circuit:

• CLK250 is selected in mode 0, and CLK333 is selected
in mode 1

CLK333

CLK250 FF1

FF2

U1 U2

U3 U4SEL

0

1

Combining Modes: An Example

© 2006 Synopsys, Inc. (11)

Predictable Success

Combining Modes: An Example

• Analyzed separately, case analysis is used to select
the appropriate clock for each mode

create_clock –period 4.00 CLK250
create_clock –period 3.00 CLK333
set_case_analysis 0 SEL

create_clock –period 4.00 CLK250
create_clock –period 3.00 CLK333
set_case_analysis 1 SEL

mode 0: mode 1:

© 2006 Synopsys, Inc. (12)

Predictable Success

Combining Modes: An Example

• Analyzed together, we could combine these modes
together with the following commands:
� Need set_clock_groups to prevent CLK250↔CLK333 paths

create_clock –period 4.00 CLK250
create_clock –period 3.00 CLK333
set_clock_groups –logically_exclusive –group CLK250 –group CLK333

modes 0&1 combined:

caesar
Note
difference between false path and clock group on SI.

if two clocks are set as false path, the arrival window is infinite, this is a little pessimistic

but for exclusive clock group, it will ignore the SI effect each other.

© 2006 Synopsys, Inc. (13)

Predictable Success

Combining Modes: Limitations

• On the surface, it seems like combining modes is the
way to go!
� Fewer runs to get the same amount of work done

• However, there are drawbacks to combining modes
� Timing pessimism
� Increased memory/runtime
� Increased script complexity

• Let’s examine each of these areas in more detail...

© 2006 Synopsys, Inc. (14)

Predictable Success

Agenda

• Where Multiple Analyses Come From
• Combining Modes

� Introduction
�� Timing PessimismTiming Pessimism
� Memory/Runtime Requirements
� Script Complexity

• Distributed Multi-Scenario Analysis (DMSA)
� Introduction and Setup
� Features
� Example: Hold-Fixing

• Summary

© 2006 Synopsys, Inc. (15)

Predictable Success

Combining Modes:
Slew Propagation Pessimism

• PrimeTime computes both min and max timing for
every timing arc in the design
� Fast slews always propagated for min-delay computation
� Slow slews always propagated for max-delay computation

© 2006 Synopsys, Inc. (16)

Predictable Success

Combining Modes:
Slew Propagation Pessimism

• In the example circuit below:
� CLK250 propagates a slow slew (red) into the clock network
� CLK333 propagates a fast slew (green) into the clock network

© 2006 Synopsys, Inc. (17)

Predictable Success

Combining Modes:
Slew Propagation Pessimism

• When the modes are analyzed separately:
� The clock buffers have slow min and max delays in mode 0
� The clock buffers have fast min and max delays in mode 1

mode 0: mode 1:

© 2006 Synopsys, Inc. (18)

Predictable Success

CLK333

CLK250 FF1

FF2

U1 U2

U3 U4
max

min

max

min

max max

max max

min min

min min

0

1

Combining Modes:
Slew Propagation Pessimism

• However, when the modes are analyzed together, both
clocks propagate into the network:
� The slow CLK250 slew (red) is used for max-delay propagation
� The fast CLK333 slew (green) is used for min-delay propagation

© 2006 Synopsys, Inc. (19)

Predictable Success

Combining Modes:
Slew Propagation Pessimism

• Setup paths use max-delay launch, min-delay capture
� For setup path in CLK250 domain, capture is pessimistic
� For setup path in CLK333 domain, launch is pessimistic

© 2006 Synopsys, Inc. (20)

Predictable Success

Combining Modes:
Slew Propagation Pessimism

• Hold paths use min-delay launch, max-delay capture
� For hold path in CLK250 domain, launch is pessimistic
� For hold path in CLK333 domain, capture is pessimistic

© 2006 Synopsys, Inc. (21)

Predictable Success

Slew Propagation Pessimism:
What Have We Learned?

• When multiple operating modes are collapsed together, a loss of
information (and accuracy) must occur
� A timing arc can only have a single set of min/max timing behaviors
� The only safe behavior is to keep the most pessimistic min/max timing

across all modes, and then use that timing for every mode

• Analyzed separately, each operating mode has its own unique timing
� Every analysis is accurate

mode 0 mode 1 modes 0&1 combined

+ =
max

min

max

max max

min

min min

© 2006 Synopsys, Inc. (22)

Predictable Success

Combining Modes:
Cross-Clock SI Interactions

• When we bring SI into the picture, things get more
complicated
� Let’s add some coupling and see what happens...

© 2006 Synopsys, Inc. (23)

Predictable Success

Combining Modes:
Cross-Clock SI Interactions

• When the modes are analyzed separately (mode 0
shown):
� Only a single frequency clock is present on n1 and n2
� The edge on n1 is always later than the edge on n2
� Overlap can never occur (regardless of this single clock’s

frequency) so no delta delays occur on either net

© 2006 Synopsys, Inc. (24)

Predictable Success

Combining Modes:
Cross-Clock SI Interactions

• When the modes are analyzed together:
� Both clocks are seen on both nets
� Crosstalk interactions between the clocks are probable

• In fact, they are a certainty if the clocks are asynchronous

© 2006 Synopsys, Inc. (25)

Predictable Success

Combining Modes:
Cross-Clock SI Interactions

• To handle this, clocks can be made physically exclusive
� Interactions between physically exclusive clocks are not

considered
� We will revisit the concept of physically exclusive clocks a little

later

© 2006 Synopsys, Inc. (26)

Predictable Success

Combining Modes:
Window Merging Within Clock Domain

• Combining modes can cause pessimism even within a
single clock domain

• In the example circuit below:
� We select between the normal and delayed version of a clock
� The clock net couples to some other net in the design

© 2006 Synopsys, Inc. (27)

Predictable Success

Combining Modes:
Window Merging Within Clock Domain

• When the modes are analyzed separately:
� The non-delayed mode has an early arrival window on n1
� The delayed mode has a late arrival window on n1
� Both arrival windows are narrow

mode 0: mode 1:

© 2006 Synopsys, Inc. (28)

Predictable Success

Combining Modes:
Window Merging Within Clock Domain

• However, when the modes are analyzed together, both
clocks propagate into the network:
� All possible arrival windows for the clock are merged together
� A single wide arrival window results
� The middle section in red represents the pessimistic portion of

the window which could not occur in either mode

© 2006 Synopsys, Inc. (29)

Predictable Success

Combining Modes:
Pessimism Effects Interact

• The different causes of pessimism…
� slew merging pessimism
� SI pessimism across clocks
� window merging pessimism within clock domain

• …do interact with each other
• Let’s take a look at some examples to see how these

effects interact and compound

© 2006 Synopsys, Inc. (30)

Predictable Success

Pessimism Effects Interact:
Example #1

• In the example circuit below:
� We have slew merging pessimism across modes
� Nets n1 and n2 are coupled

© 2006 Synopsys, Inc. (31)

Predictable Success

Pessimism Effects Interact:
Example #1

• When the modes are analyzed together:
� Window alignment is found which isn’t possible in either mode

(due to the difference in buffer delays)
� These victim/aggressor calculations also use a min/max slew

combination which isn’t possible in either mode

© 2006 Synopsys, Inc. (32)

Predictable Success

Pessimism Effects Interact:
Example #2

• In the example circuit below:
� We have slew merging pessimism across modes
� There are multiple coupled stages downstream of the slew merge

© 2006 Synopsys, Inc. (33)

Predictable Success

Pessimism Effects Interact:
Example #2

• When the modes are analyzed together:
� Slew merging pessimism causes the min/max timing of buffers

U1-U3 to widen
� n1 is attacked by n2 although it couldn’t happen in either mode
� Now the window/slews on n3 pessimistically attack n4…

© 2006 Synopsys, Inc. (34)

Predictable Success

CLK333

CLK250 FF1

FF2

max

min

max

min

MODESEL

0

1
0

1

Combining Modes:
Pessimism Effects Interact

• And of course these effects continue to propagate…
� Pessimistic slews yield pessimistic arrival/slew timing
� These pessimistically-timed nets attack other victim nets
� Those aggressions widen their downstream windows, worsen

their downstream slews
� The process continues… across both clock and data logic!

© 2006 Synopsys, Inc. (35)

Predictable Success

Pessimism From Combining Modes:
What Have We Learned?

• When different modes are merged together:
� Slew merging pessimism occurs
� SI pessimism across clocks occurs
� Window merging pessimism within clock domain occurs
� These effects interact and compound

• The resulting merged-mode timing is more pessimistic
than any of the original modes
� The resulting analysis is safe but pessimistic
� PrimeTime is doing the right thing, but with pessimistic input
� We have indeed reduced the number of runs, but at an

accuracy cost

© 2006 Synopsys, Inc. (36)

Predictable Success

Agenda

• Where Multiple Analyses Come From
• Combining Modes

� Introduction
� Accuracy Impact
�� Memory/Runtime RequirementsMemory/Runtime Requirements
� Script Complexity

• Distributed Multi-Scenario Analysis (DMSA)
� Introduction and Setup
� Features
� Example: Hold-Fixing

• Summary

© 2006 Synopsys, Inc. (37)

Predictable Success

Combining Modes:
Analysis Memory/Runtime
• When combining runs together, memory and runtime increase
• To understand why, let’s look at how PrimeTime stores the timing

data for the following example circuit:

• Since PrimeTime deals with timing arcs, let’s represent this
circuit using timing arcs:

© 2006 Synopsys, Inc. (38)

Predictable Success

Combining Modes:
Analysis Memory/Runtime

• PrimeTime computes the timing in two passes
� Pass #1: timing arc min/max delays and slews are computed

• Arc delays and slews are merged across multiple clock domains

© 2006 Synopsys, Inc. (39)

Predictable Success

CLK333

CLK250 FF

min: 0.2
max: 0.4

CLK250

min: 1.0
max: 1.6

CLK250

min: 1.1
max: 1.8

CLK250
min: 2.2
max: 3.2

CLK250 min: 2.4
max: 3.5

CLK250 min: 3.6
max: 5.0

CLK250 min: 3.7
max: 5.2

CLK250

min: 4.4
max: 6.1

CLK250

min: 0.3
max: 0.5

CLK333

min: 1.3
max: 1.8

CLK333 min: 1.5
max: 2.1

CLK333 min: 2.7
max: 3.6

CLK333 min: 2.8
max: 3.8

CLK333

min: 3.5
max: 4.7

CLK333

0

1

Combining Modes:
Analysis Memory/Runtime

� Pass #2: merged arc delays are used to propagate pin arrival times
• Arrival times are computed per clock domain

© 2006 Synopsys, Inc. (40)

Predictable Success

Combining Modes:
Analysis Memory/Runtime

• As the number of simultaneous clock domains
increases:
� The memory required to store all the arrivals increases
� The runtime required to compute and propagate the

delays/slews increases

© 2006 Synopsys, Inc. (41)

Predictable Success

Combining Modes:
Analysis Memory/Runtime

• Below is some data from real customer designs
� “Original Clocks” is the analysis with original clocks
� “Duplicated Clocks” is the analysis with a second set of

physically exclusive clocks with slightly different clock periods

% differenceDuplicated ClocksOriginal Clocks

+13%+21%3.52 GB7351 s3.11GB6051 s4

+45%+46%6.40 GB4136 s4.40 GB2832 s3

+15%+8%1.47 GB1483 s1.28 GB1373 s2

+21%+31%998 MB1276 s826 MB973 s1

memoryCPUMemoryCPUmemoryCPUDesign

© 2006 Synopsys, Inc. (42)

Predictable Success

Analysis Memory/Runtime:
What Have We Learned?

• As we combine modes and add more clocks:
� More time is needed for extra delay calculations and clock

propagation
� More memory is needed to store each clock’s arrivals
� These per-clock arrivals are computed using the worst arc

value across all clocks
• We have indeed reduced the number of runs, but at a

memory, runtime and accuracy cost

© 2006 Synopsys, Inc. (43)

Predictable Success

Agenda

• Where Multiple Analyses Come From
• Combining Modes

� Introduction
� Accuracy Impact
� Memory/Runtime Requirements
�� Script ComplexityScript Complexity

• Distributed Multi-Scenario Analysis (DMSA)
� Introduction and Setup
� Features
� Example: Hold-Fixing

• Summary

© 2006 Synopsys, Inc. (44)

Predictable Success

• Let’s revisit this example circuit:

• We mentioned that physically exclusive clocks would allow us to
tell PrimeTime SI to ignore SI interactions between CLK250 and
CLK333:

• This is great! There must be a catch...

Combining Modes:
Script Complexity

set_clock_groups –physically_exclusive \
-group CLK250 –group CLK333

© 2006 Synopsys, Inc. (45)

Predictable Success

Combining Modes:
Script Complexity
• The catch is, it may not be safe to suppress all CLK250↔CLK333

SI interactions
� These clocks are only physically exclusive downstream of the mux
� There could be real interactions before the clocks are muxed together:

CLK250 and CLK333 won’t interact here

but they definitely could here!

© 2006 Synopsys, Inc. (46)

Predictable Success

Combining Modes:
Script Complexity
• We can address this by:

� creating generated clock versions of the original clocks on the mux input pins
� applying the physically exclusive property only on these generated clocks
� making the two frequency domains asynchronous (since now we realize there

really could be interactions)

create_clock –period 4.00 [get_ports CLK250]
create_clock –period 3.00 [get_ports CLK333]
create_generated_clock –name CLK250_mux –combinational \

–source [get_ports CLK250] [get_pins UMUX/A]
create_generated_clock –name CLK333_mux –combinational \

–source [get_ports CLK333] [get_pins UMUX/B]
set_clock_groups –physically_exclusive –group {CLK250_mux} –group {CLK333_mux}
set_clock_groups –asynchronous –group {CLK250 CLK250_mux} –group {CLK333 CLK333_mux}

© 2006 Synopsys, Inc. (47)

Predictable Success

Combining Modes:
Script Complexity

• We have gone from two separate runs varying a mode select...

• ...to a single run with this:

• We reduced the number of runs, but at a complexity cost
� This process must be repeated for every pin where clocks are combined

create_clock –period 4.00 [get_ports CLK250]
create_clock –period 3.00 [get_ports CLK333]
create_generated_clock –name CLK250_mux –combinational \
–source [get_ports CLK250] [get_pins UMUX/A]

create_generated_clock –name CLK333_mux –combinational \
–source [get_ports CLK333] [get_pins UMUX/B]

set_clock_groups –physically_exclusive –group {CLK250_mux} –group {CLK333_mux}
set_clock_groups –asynchronous –group {CLK250 CLK250_mux} –group {CLK333 CLK333_mux}

create_clock –period 4.00 [get_ports CLK250]
create_clock –period 3.00 [get_ports CLK333]
set_case_analysis 0 [get_ports SEL]

create_clock –period 4.00 [get_ports CLK250]
create_clock –period 3.00 [get_ports CLK333]
set_case_analysis 1 [get_ports SEL]

© 2006 Synopsys, Inc. (48)

Predictable Success

Script Complexity:
What Have We Learned?

• When combining modes, timing and SI interactions
between modes must be carefully considered
� Know what clock relationships should and shouldn’t be applied
� Analysis scripts with combined modes require additional

scripting complexity to apply the correct relationships
• To be fair, these are not showstopper effects

� For some designs, the accuracy, memory, runtime, and
complexity effects may be minimal

� Sometimes combined modes are the only option!
• The goal of this section is to provide knowledge to:

� Know which modes are good merge candidates and which aren’t
� Know what to look for as you combine different modes

© 2006 Synopsys, Inc. (49)

Predictable Success

• Merging modes is a balancing act

• Merging modes is not always a bad thing
� For some designs, the accuracy, memory, runtime, and complexity

costs may be minimal
• Again, the goal of this presentation is to provide the knowledge to:

� Know which modes are good merge candidates and which aren’t

Merging Modes:
What Have We Learned?

more runs
less memory/runtime per run
better accuracy
less script complexity

fewer runs
more memory/runtime per run

some pessimism
more script complexity

Separate modes?Merged modes?

© 2006 Synopsys, Inc. (50)

Predictable Success

Agenda

• Where Multiple Analyses Come From
• Combining Modes

� Introduction
� Accuracy Impact
� Memory/Runtime Requirements
� Script Complexity

• Distributed Multi-Scenario Analysis (DMSA)
�� Introduction and SetupIntroduction and Setup
� Features
� Example: Hold-Fixing

• Summary

© 2006 Synopsys, Inc. (51)

Predictable Success

What Is Distributed Multi-Scenario
Analysis (DMSA)?

• DMSA provides efficient unified analysis of multiple
PrimeTime analyses (or scenarios) from a single master
PrimeTime
� We can work with multiple analyses as easily as with a single

PrimeTime analysis run!

DMSA
MASTER

PT
slave

PT
slave

PT
slave

PT
slave

network connection
PT

slave

© 2006 Synopsys, Inc. (52)

Predictable Success

DMSA Uses Independent Accurate
Analyses

• Each scenario in a DMSA run is a full PrimeTime
analysis which can have its own unique:
� delay and slew timing
� detailed parasitics
� PrimeTime variable settings
� etc.

scenario N

min: 0.9
max: 1.7

CLK333

FF1

min: 0.8
max: 0.9

CLK333
min: 1.8
max: 2.1

CLK333
min: 1.9
max: 2.2

CLK333
min: 3.2
max: 3.5

CLK333
min: 3.3
max: 3.7

CLK333
min: 4.3
max: 4.8

CLK333

scenario 2

min: 1.0
max: 1.2

CLK333

FF1

min: 0.8
max: 1.0

CLK333
min: 1.9
max: 2.2

CLK333
min: 2.0
max: 2.3

CLK333
min: 3.5
max: 3.9

CLK333
min: 3.8
max: 4.3

CLK333
min: 4.9
max: 5.5

CLK333

scenario 1

min: 0.9
max: 1.7

CLK400

FF1

min: 0.8
max: 0.9

CLK400
min: 1.9
max: 2.2

CLK400
min: 2.0
max: 2.4

CLK400
min: 2.9
max: 3.6

CLK400
min: 3.3
max: 3.8

CLK400
min: 4.4
max: 4.9

CLK400

© 2006 Synopsys, Inc. (53)

Predictable Success

Setting Up DMSA

• To set up a DMSA run, three key components must be
configured:
� Number of licenses
� Number of remote slave processes
� Scenario definitions

• Let’s take a look at how these are configured

PT
slave

PT license

set link_path "* lib_${corner}.db"
read_verilog design.v.gz
current_design eth_top
link

switch $corner {
bc {set_operating_conditions FAST –

analysis_type on_chip_variation}
wc {set_operating_conditions SLOW –

analysis_type on_chip_variation}
}
read_parasitics design.sbpf

switch $mode {
func {
...functional constraints...

}
test {
...test constraints...

}
}

analysis
script(s)

© 2006 Synopsys, Inc. (54)

Predictable Success

DMSA
MASTER

Setting Up DMSA:
Configuring Licenses

• We give DMSA the upper limit for the number of licenses
to use
� A minimum of one is needed to do any work
� Additional licenses are pulled from the license server as needed
� The master does not require an extra license

• In the example below:
� We allow DMSA up to 4 PrimeTime and PrimeTime-SI licenses

pull up to 4 PrimeTime and PrimeTime SI licenses
set_multi_scenario_license_limit -feature PrimeTime 4
set_multi_scenario_license_limit -feature PrimeTime-SI 4

PT license

PT license
PT license

PT license

© 2006 Synopsys, Inc. (55)

Predictable Success

Setting Up DMSA:
Configuring Remote Processes

• We give DMSA information on the remote processes
to invoke
� Compute farms are supported (LSF, GRD, proprietary)
� Discrete named machines can be given
� A mix of platforms (linux, sparc, 32/64-bit, etc.) can be used

• In the example below:
� We ask DMSA to invoke 4 processes on an LSF farm

PT
slave

DMSA
MASTER
add four LSF remote processes
add_distributed_hosts \

-32bit -farm lsf -num_of_hosts 4 \
-options "-o $multi_scenario_working_directory" \
-submission_script [sh which bsub]

PT
slave

PT
slave

PT
slave

remote pt_shells

© 2006 Synopsys, Inc. (56)

Predictable Success

• The analysis scenarios are defined in one of two ways:
� Providing PrimeTime scripts which load/constrain the analyses:

� Providing existing PrimeTime saved sessions:

Setting Up DMSA:
Defining Scenarios

DMSA
MASTER

S1

S3

S2

S4

set link_path "* lib_${corner}.db"
read_verilog design.v.gz
current_design eth_top
link

switch $corner {
bc {set_operating_conditions FAST –analysis_type

on_chip_variation}
wc {set_operating_conditions SLOW –analysis_type

on_chip_variation}
}
read_parasitics design.sbpf

switch $mode {
func {
...functional constraints...

}
test {
...test constraints...

}
}

set link_path "* lib_${corner}.db"
read_verilog design.v.gz
current_design eth_top
link

switch $corner {
bc {set_operating_conditions FAST –analysis_type

on_chip_variation}
wc {set_operating_conditions SLOW –analysis_type

on_chip_variation}
}
read_parasitics design.sbpf

switch $mode {
func {
...functional constraints...

}
test {
...test constraints...

}
}

set link_path "* lib_${corner}.db"
read_verilog design.v.gz
current_design eth_top
link

switch $corner {
bc {set_operating_conditions FAST –analysis_type

on_chip_variation}
wc {set_operating_conditions SLOW –analysis_type

on_chip_variation}
}
read_parasitics design.sbpf

switch $mode {
func {
...functional constraints...

}
test {
...test constraints...

}
}

set link_path "* lib_${corner}.db"
read_verilog design.v.gz
current_design eth_top
link

switch $corner {
bc {set_operating_conditions FAST –analysis_type

on_chip_variation}
wc {set_operating_conditions SLOW –analysis_type

on_chip_variation}
}
read_parasitics design.sbpf

switch $mode {
func {
...functional constraints...

}
test {
...test constraints...

}
}

DMSA
MASTER

© 2006 Synopsys, Inc. (57)

Predictable Success

Setting Up DMSA:
Defining Scenarios Using Scripts

• If you have a different script for each scenario, just
point to the proper script for that scenario definition

foreach corner {bc wc} {
foreach mode {func test} {
create_scenario \
-name ${mode}_${corner} \
-specific_data "pt_${mode}_${corner}.tcl"

}
}

set link_path "* lib_${corner}.db"
read_verilog design.v.gz
current_design eth_top
link

switch $corner {
bc {set_operating_conditions FAST –

analysis_type on_chip_variation}
wc {set_operating_conditions SLOW –

analysis_type on_chip_variation}
}
read_parasitics design.sbpf

switch $mode {
func {
...functional constraints...

}
test {
...test constraints...

}
}

pt_func_bc.tcl

set link_path "* lib_${corner}.db"
read_verilog design.v.gz
current_design eth_top
link

switch $corner {
bc {set_operating_conditions FAST –

analysis_type on_chip_variation}
wc {set_operating_conditions SLOW –

analysis_type on_chip_variation}
}
read_parasitics design.sbpf

switch $mode {
func {
...functional constraints...

}
test {
...test constraints...

}
}

pt_test_bc.tcl

set link_path "* lib_${corner}.db"
read_verilog design.v.gz
current_design eth_top
link

switch $corner {
bc {set_operating_conditions FAST –

analysis_type on_chip_variation}
wc {set_operating_conditions SLOW –

analysis_type on_chip_variation}
}
read_parasitics design.sbpf

switch $mode {
func {
...functional constraints...

}
test {
...test constraints...

}
}

pt_func_wc.tcl

set link_path "* lib_${corner}.db"
read_verilog design.v.gz
current_design eth_top
link

switch $corner {
bc {set_operating_conditions FAST –

analysis_type on_chip_variation}
wc {set_operating_conditions SLOW –

analysis_type on_chip_variation}
}
read_parasitics design.sbpf

switch $mode {
func {
...functional constraints...

}
test {
...test constraints...

}
}

pt_test_wc.tcl

© 2006 Synopsys, Inc. (58)

Predictable Success

Setting Up DMSA:
Defining Scenarios Using Scripts
• The more common case is a single analysis script using

variables to control which mode/corner is analyzed
� Below, mode and corner control the analysis
set link_path "* lib_${corner}.db"
read_verilog design.v.gz
current_design eth_top
link

switch $corner {
bc {set_operating_conditions FAST –analysis_type on_chip_variation}
wc {set_operating_conditions SLOW –analysis_type on_chip_variation}

}
read_parasitics design.sbpf

switch $mode {
func {
...functional constraints...

}
test {
...test constraints...

}
}

© 2006 Synopsys, Inc. (59)

Predictable Success

• In this case, we simply vary these variables across
their different combinations and create scenarios:

� The -specific_variables option “pushes” a variable’s
current master value into the scenario

• How does this work?

Setting Up DMSA:
Defining Scenarios Using Scripts

foreach corner {bc wc} {
foreach mode {func test} {
create_scenario \
-name ${mode}_${corner} \
-specific_variables {mode corner} \
-specific_data {pt_analysis.tcl}

}
}

set link_path "* lib_${corner}.db"
read_verilog design.v.gz
current_design eth_top
link

switch $corner {
bc {set_operating_conditions FAST –

analysis_type on_chip_variation}
wc {set_operating_conditions SLOW –

analysis_type on_chip_variation}
}
read_parasitics design.sbpf

switch $mode {
func {
...functional constraints...

}
test {
...test constraints...

}
}

pt_analysis.tcl

corner=bc
mode=func

corner=bc
mode=test

corner=wc
mode=func

corner=wc
mode=test

© 2006 Synopsys, Inc. (60)

Predictable Success

Setting Up DMSA:
Defining Scenarios Using Scripts
• Using –specific_variables in a scenario definition can be

thought of as:
� invoking a PrimeTime session
� setting the specified variables
� sourcing the scenario script

set corner wc
set mode func

create_scenario \
-name func_wc \
-specific_variables {mode corner} \
-specific_data {pt_analysis.tcl}

set corner {wc}
set mode {func}

source pt_analysis.tcl

DMSA
MASTER

PT
slave

master script:

remote pt_shell:

© 2006 Synopsys, Inc. (61)

Predictable Success

sessions/sessions/

sessions/sessions/

Setting Up DMSA:
Defining Scenarios Using Sessions

• You can also define scenarios with saved sessions:

• SolvNet article 018039 provides a Tcl procedure to
easily restore a directory of saved sessions:

create_scenario \
-name func_wc –image sessions/func_wc

create_scenario \
-name func_bc –image sessions/func_bc

func_wc func_bc

restore_dmsa_session sessions/
S1 S3S2 S4

© 2006 Synopsys, Inc. (62)

Predictable Success

Agenda

• Where Multiple Analyses Come From
• Combining Modes

� Introduction
� Accuracy Impact
� Memory/Runtime Requirements
� Script Complexity

• Distributed Multi-Scenario Analysis (DMSA)
� Introduction and Setup
�� FeaturesFeatures
� Example: Hold-Fixing

• Summary

© 2006 Synopsys, Inc. (63)

Predictable Success

Flexible License Management

• When (# licenses) < (# remote processes):
� The master distributes licenses to the remote processes
� When a task finishes at a remote process, the license is freed to

be immediately used by another process
� Remote processes are not terminated to free license

DMSA
MASTER

(waiting)

(waiting)active

active

PT
slave

PT
slave

PT
slave

PT
slave

PT license

PT license

© 2006 Synopsys, Inc. (64)

Predictable Success

Flexible Machine Management

• When (# remote processes) < (# scenarios):
� Scenario images must be swapped to disk to execute the task

across all scenarios
• This is expensive in terms of disk activity and runtime

� This should be avoided unless absolutely necessary!

DMSA
MASTER

active

S1 S2 S3 S4

image swapping

PT
slave

© 2006 Synopsys, Inc. (65)

Predictable Success

Merged Reporting

• We have seen that DMSA lets us easily run all
scenarios together

• The big payoff is that we can also easily analyze all
scenarios together!
� The easiest method is using merged reporting, where we can

issue reporting commands across all scenarios

• Merged reporting significantly helps complexity
management when there are many scenarios
� Let’s take a look at some example reports...

© 2006 Synopsys, Inc. (66)

Predictable Success

Merged report_timing

• To see the 10 worst paths in each path groups across all
scenarios, we simply issue:

• DMSA automatically merges the results across all scenarios,
saving us from sifting through hundreds of nearly identical reports
� Topological duplicates are automatically removed

DMSA
MASTER

report_timing –max_paths 10

(10 paths per group per scenario)
Paths from all scenarios in focus

10 paths per group
across all scenarios

PT
slave

PT
slave

PT
slave

PT
slave

PT
slave

PT
slave

S1

S2

S3

S4

S5

S6

PT
slave

PT
slave

S7

S8

© 2006 Synopsys, Inc. (67)

Predictable Success

Merged report_timing

• Merged reports typically include the scenario name in
the report
� Below is a timing report from report_timing

Startpoint: m_wb_ack_i (input port clocked by wb_clk_i)
Endpoint: core/wishbone/IncrTxPointer_reg

(rising edge-triggered flip-flop clocked by wb_clk_i)
Path Group: inputs
Path Type: max
Scenario: func_wc
Max Data Paths Derating Factor : 1.00
Min Clock Paths Derating Factor : 0.95
Max Clock Paths Derating Factor : 1.00

© 2006 Synopsys, Inc. (68)

Predictable Success

Merged report_timing

• We can also use “-path_type end” to see path
summaries listed with scenario and slack columns

pt_shell> report_timing -path_type end -max_paths 10 –delay min
...

Endpoint Path Delay Path Required Slack Scenario
--
Busy_IRQ_sync2_reg/D (DFQD1) 0.68 f 0.75 -0.07 wc
RxAbortSync4_reg/D (DFCNQD1) 0.72 f 0.78 -0.06 wc
ethreg1/SetTxCIrq_sync3_reg/D (DFCNQD1) 0.41 f 0.47 -0.05 bc
SendControlFrame_sync3_reg/D (DFCNQD1) 0.57 f 0.62 -0.05 tc
WriteRxDataToFifoSync3_reg/D (DFCNQD1) 0.58 f 0.63 -0.05 tc
miim1/RStat_q2_reg/D (DFCND1) 0.41 f 0.46 -0.05 bc
SyncRxStartFrm_q_reg/D (DFCND1) 0.73 f 0.78 -0.05 wc
Busy_IRQ_sync3_reg/D (DFQD1) 0.70 f 0.74 -0.05 wc
WriteRxDataToFifoSync2_reg/D (DFCND1) 0.58 f 0.63 -0.05 tc
miim1/EndBusy_reg/D (DFCND1) 0.41 f 0.46 -0.05 wc

© 2006 Synopsys, Inc. (69)

Predictable Success

Merged report_si_bottleneck

• The merged report_si_bottleneck shows the
worst victims across all scenarios
� Great for finding and fixing the worst crosstalk problems

across all scenarios
Bottleneck Cost: delta_delay
net scenario cost
--
n42 wc 0.08
m_wb_adr_o[8] wc 0.06
wishbone/bd_ram/C36257/n295 wc 0.05
temp_wb_dat_o[18] wc 0.03
n46 bc 0.02
wishbone/bd_ram/C36257/n311 wc 0.01
wb_sel_i[0] wc 0.01
wishbone/WriteRxDataToFifoSync1 wc 0.01
wishbone/ReadTxDataFromFifo_sync1 wc 0.01
wishbone/TxDone_wb bc 0.01
wishbone/TxAbortSync1 tc 0.01

© 2006 Synopsys, Inc. (70)

Predictable Success

ECOs Across Scenarios

• All the usual ECO commands are available:
� size_cell

� insert_buffer

� remove_buffer

� create_cell, create_net
� remove_cell, remove_net
� connect_net, disconnect_net

• You can resize a cell or insert a buffer and
immediately see the results across all scenarios
� All scenarios update incrementally

© 2006 Synopsys, Inc. (71)

Predictable Success

Agenda

• Where Multiple Analyses Come From
• Combining Modes

� Introduction
� Accuracy Impact
� Memory/Runtime Requirements
� Script Complexity

• Distributed Multi-Scenario Analysis (DMSA)
� Introduction and Setup
� Features
�� Example: HoldExample: Hold--FixingFixing

• Summary

© 2006 Synopsys, Inc. (72)

Predictable Success

DMSA Example:
Hold-Fixing Across Scenarios

• How can we fix hold violations in all scenarios without
introducing setup in any scenarios?
� Furthermore, how can we optimize the buffer placement to

minimize the buffer insertion count?

FF1

FF2

FF3

FF4

U1
U2

FF5

U3

U4

A
A

C
B

B

(setup violation only)

© 2006 Synopsys, Inc. (73)

Predictable Success

DMSA Example:
Hold-Fixing Across Scenarios

• In our example circuit below:
� The worst hold violation goes through U1/A
� Sub-critical hold violations go through U1/B and U1/C
� A critical setup path comes in on a side pin

© 2006 Synopsys, Inc. (74)

Predictable Success

DMSA Example:
Hold-Fixing Across Scenarios

• Priority #1 is to work on the worst hold violating path in
a cloud of logic
� Below, we want to improve hold slack along the bolded path

© 2006 Synopsys, Inc. (75)

Predictable Success

DMSA Example:
Hold-Fixing Across Scenarios

• Priority #2 is to find the pin associated with the largest
number of hold violations
� Below, we prefer the indicated pins which have three hold

violations through them

FF1

FF2

FF3

FF4

U1
U2

FF5

U3

U4

A
A

C
B

B

(setup violation only)

© 2006 Synopsys, Inc. (76)

Predictable Success

DMSA Example:
Hold-Fixing Across Scenarios

• Priority #3 is to find the pin with the largest setup slack
� Below, the indicated pins have the most setup slack “room”

to tolerate additional delay

FF1

FF2

FF3

FF4

U1
U2

FF5

U3

U4

A
A

C
B

B

(setup violation only)

© 2006 Synopsys, Inc. (77)

Predictable Success

DMSA Example:
Hold-Fixing Across Scenarios

• Priority #4 is to prefer load pins
� If the two pins are otherwise identical (same # paths, slack, etc.),

inserting a buffer at the load pin has more predictable delay

© 2006 Synopsys, Inc. (78)

Predictable Success

scenario N

DMSA Example:
Hold-Fixing Across Scenarios

• Each scenario has unique min/max rise/fall timing
� Inserted delay cells have different timing characteristics in each

scenario (depending on PVT corner, voltage, parasitics, etc.)

scenario 2

scenario 1

© 2006 Synopsys, Inc. (79)

Predictable Success

DMSA Example:
Hold-Fixing Across Scenarios

• This DMSA hold-fixing script is available in SolvNet
� Fixes hold violations while considering setup requirements

across all scenarios
� Considers the timing and slack of every scenario thoroughly
� Finds optimal placement for delay according to cost factor

previously described
• This script is just one example of the power of DMSA!

018510: "Fixing Hold Violations Across
Many Modes and Corners with DMSA"

http://solvnet.synopsys.com/retrieve/018510.html

© 2006 Synopsys, Inc. (80)

Predictable Success

Learning More About DMSA

• Your Synopsys AC can deliver a more detailed
training presentation which goes into more detail on:
� setting up DMSA
� available features and

commands
� using existing STA scripts

Predictable Success

Distributed Multi-Scenario
Analysis (DMSA Z-2006.12)
Chris Papademetrious
PrimeTime CAE

Predictable Success

Distributed Multi-Scenario
Analysis (DMSA Z-2006.12)
Chris Papademetrious
PrimeTime CAE

© 2006 Synopsys, Inc. (81)

Predictable Success

Distributed Multi-Scenario Analysis:
What Have We Learned?

• Modes and corners are increasing in number!
� Corner analyses cannot be combined
� Operating modes can be combined by trading off accuracy and

capacity

• DMSA enables easy setup and execution of large numbers of
analyses

• DMSA allows you to manage precious machine and license
resources

• With DMSA, the goal is for you – the engineer – to be able to get...
� the most accurate signoff analysis
� in less time
� with less effort
� and with fewer machine/license resources

© 2006 Synopsys, Inc. (82)

Predictable Success

Q&A

• Feel free to ask any questions!
� I have the DMSA technical training slides available if we

need them

© 2006 Synopsys, Inc. (83)

Predictable Success

Predictable Success

